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In this paper a translation function is derived for which there is a significant reduction in the intensity 
of the spurious maxima often experienced with the use of alternative methods. An analysis of partial 
structures indicates that the remaining atoms of a crystal structure may, in principle, be obtained directly 
from the translation function derivation by Fourier synthesis. 

1. Introduction 

A number of techniques exist for the solution of 
crystal structures containing molecules whose confor- 
mation is in part unambiguously defined by a rigid 
arrangement of covalent bonds. Many crystal structure 
analyses may not initially be suitable for treatment by 
these methods since it is not always possible a priori to 
describe a reference structure. It is known that direct 
methods, which use no a priori structural information, 
often produce a correctly oriented, but translationally 
displaced portion of the structure, and Karle (1972) 
has recently called attention to the applicability of 
translation functions in augmenting direct-methods 
solutions of this type. 

The methods of crystal structure analysis which 
incorporate a priori structural information may be 
conveniently divided into four groups: 1. discrepancy 
functions based on the trigonometric form of the 
structure factor expressed in terms of an unknown 
displacement vector (Booth, 1948; Vand & Pepinsky, 
1956; Taylor & Morley, 1959); 2. translation and 
rotation function based on the convolution of the 
square of the structure amplitudes between the real 
and reference structures (Tollin & Cochran, 1964; Tol- 
lin, 1966; Crowther & Blow, 1967; Karle, 1972); 3. 
analogous orientation and displacement functions 
which operate on the Fourier transforms of these 
intensities (Hoppe, 1957; Nordman & Nakatsu, 1963; 
Huber, 1965; Braun, Hornstra & Leenhouts, 1969); 4. 
algebraic procedures which yield probabilistic estimates 
of crystal structure invariants given the molecular 
conformation (Hauptman, 1964) or conformation and 
orientation (Kroon & Krabbendam, 1970) of the 
structures of the crystallographic asymmetric unit. 

Presented herein is a translation function which is 
basically the Patterson function of the deconvoluted 
molecular structure. It will be shown that the magni- 
tude and location of spurious maxima in translation 
vector syntheses are determined by the molecule 
structure and the particular translation function used. 
The magnitude of spurious peaks produced by the 
phase-modulated translation function described in this 
paper will be shown to be half that produced by 

translation functions which are both phase and am- 
plitude modulated. It will also be shown that the 
translation functions, when applied to correctly po- 
sitioned partial structures, can aid in the location of 
missing structural fragments via a substitution of the 
coefficients involved in Fourier synthesis. 

2. Molecular transform notation 

Given that the orientation of a chemical structure or 
molecule has been deduced, one may define its trans- 
form in terms of its coordinates relative to an arbitrarily 
chosen origin as 

N 

Fho = ~ f j  exp (2nih. rjo), (1) 
j = l  

where rjo is the position vector of the jth atom with 
respect to the arbitrary origin. Fho is the value of the 
continuous molecular transform sampled at the recip- 
rocal-lattice point h. This expression is similar to the 
Ewald transform (Ewald, 1935) of a spatial array of 
atoms, but differs in that the origin of the transform need 
not coincide with its true location in the unit cell. Define 
by r0 the vector describing the position of the arbitrary 
origin with respect to a crystallographic origin and by 
rj the position vector of the j th atom with respect to 
that origin. Then 

rs = r0 + rso. (2) 

It follows that the structure factor, which is 

N 

Fh= ~ f ~  exp [2nih. (r0 +rjo)] , (3) 
j = l  

is the product of Fh0 and a phase factor which contains 
the components of the translation vector, r0, necessary 
to bring the initial (reference) structure into coincidence 
with its image correctly placed in the unit cell, 

Fh = Fho exp (2nih. ro). (4) 

If we choose to consider the symmetry of a partic- 
ular space group, it may be shown that the structure 
factor can be expressed as a summation of terms, each 
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a product of two factors. The first factor is the trans- 
form of the molecule evaluated at the reciprocal- 
lattice point hkl (or one of its symmetry-equivalent 
lattice points defined by the crystallographic point 
group), the second is a phase factor which contains 
the components of the translation vector. Thus, for 
example, one finds that the structure amplitude for 
the space group P]" may be written as 

F~,kz = Fhkzo exp [2ni(hxo + kyo + lz0)] 

+ FnkTo exp [-- 2ni(hxo + kyo + lzo)] . 

= 21Fhuol cos [2n(hxo + kyo + lzo) + ~0hkZo], (5) 

where 

and 
F~kzo: IFhkzol exp (i~ohkto) 

Fh~o = IFhkzol exp ( -  i~ohaZo). 

Equation (5) leads directly to the coefficient Gei 
defined by 

Gpi = {IFhk,I z -  2lFhk,ol z} 

= 21Fnk,ol z cos [4n(hxo + kyo + lzo) + 2~0hkZo], (6) 

from which the translation vector is determinable as 
the maximum of the Fourier synthesis 

• (x,y,z)= ~ ~ ~ Gei cos [4n(hx + ky + lz) + 2~0hkto] • 
h k 1 

(7) 

The derivation of (7) from (6) should be seen to be 
an obvious, foreseeable result for most crystallograph- 
ers who may choose to reason by the analogy posed by 
the similarities shared by both Gpi and its Fourier 
transform, ~(x,y,z), and Fhkz and the electron density, 
Q(x,y,z). The algebraic proof that ~(x,y,z) possesses a 
maximum at the value of the true displacement vector, 
r0, is given in §3, (15) for the space group PT. 

At this point let us consider the similarities between, 
say, equation (7) and the corresponding location func- 
tions given by Vand & Pepinsky (1956), 

T= ~, ~, ~ {[Ehk, lz--2[Ehkto]Z}lE~,k,o] z 
h k 1 

x cos [4n(hx + ky + lz) + 2~0nk,o], (8) 

Tollin (1966), for an equal atom structure, 

Q(Ro) = Z ~ Z { [Ehu]2 
h k l 

- 1)lE~,ol ~ cos [4n(hx + ky + lz) + 2fp~k~o], (9) 

and Karle (1972), 

D3(5)= Z Z Z {( IEhktlz- 1) 
h k 1 

- 2(IE.klol z -  1)}[E~,~, o -  C3I 

x exp [2ni(hx + ky + lz)], (10) 

which are here expressed with normalized structure am- 
plitudes for uniformity. The relationship given by (8) 

is found to be encompassed in the Tl(t) function of 
Crowther & Blow (1967). While various terms are 
defined for the real component of the location function 
given in the braces of expressions (8) through (10), 
each function is modulated by both the phase and 
amplitude of the transform product z Ehk lo .  

The location vector functions proposed in this paper 
emphasize only the importance of the phase of the 
molecular transform product in the subsequent Fourier 
synthesis, 

7. Z  le,,k,l -21e,,k,ol 
h k 1 

×COS[4n(hx+ky+lz)+2~Ohkj. (11) 

3. Relat ive  intensit ies  o f  spurious m a x i m a  

The following analysis is put forth to demonstrate 
that spurious maxima are an inescapable manifestation 
of the translation functions referred to above. It will 
be shown that the spatial location and intensity of 
spurious maxima in these translation-vector syntheses 
are primarily determined by the molecular structure 
and the particular translation function used. 

To consider the phase-modulated synthesis (7), one 
may substitute 

{IE,,12-21E,,o12}=21E,,ol 2 cos [4nh. ro+2~0h o] (12) 

to yield 

• (r) = 2 ~ IEhol 2 cos [4nh. r0 + 2~Ono] 
h 

× cos [4nh. r + 2~0no] 

= ~ IEhol2{cos [4nh. (ro-r)]  
h 

+ cos [4nh. (to + r) + 4~Ph0]} • (1 3) 

Further analysis will become more manageable if, 
for the time being, we choose to restrict ourselves to an 
equal-atom problem in this exercise. It may then be 
shown that 

2 n 
IEhol2= 1 + JV ~ cos [2nh. (rjo--rko) ] . (14) 

. />k  

This expression may be substituted into (13), and by 
averaging over the number of diffraction terms in the 
synthesis 

~'(r) = < ~ {cos [4nh. (ro-r)]  

+ cos [4nh. (r0 + r) + 4~ho]} 

+N-1 ~ / c ° s 4 n h  [ r ° - r +  ( r J ° 2 r k ° ) ] h  j>k~ " - 

(15) 
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It is clear that the phase-modulated synthesis will 
have a maximum whose intensity is unity in the case 
that r=r0. It also follows that spurious maxima will 
occur whenever r=r0+(rjo--rko)/2. The intensity of 
these spurious maxima will be roughly proportional 
to some integer multiple of 1IN which would allow for 
the degree of overlap of certain of these vectors as 
may be predicted from the molecular structures. Thus, 
the true translation vector, in addition to being the 
largest expected maximum of the phase-modulated 
synthesis, is also an inversion center about which the 
lesser, structure-dependent, spurious maxima are dis- 
tributed. 

An important observation to make at this point is 
that the cosine terms in (15) which contain the argu- 
ment 4~0h0 may in fact be eliminated if one executes 
the following synthesis 

¢i"(r) = (2 ~ [Euol 2 sin (4rch. ro 
h 

+ 2~OUo) sin (4nh. r + 2~OUo))h 

= ( n~ {cos 4zch • (ro-r) 

- c o s  [4z~h. (ro + r) + 4~Oho]) 
1 

+ -N ~j>~t, {c°s [4rch" [ r ° - r  + (rj°--rk°) ] ] • - 2 

- cos  [4rch. [ ro+r+ ( r j ° - rk° ) ]  +4qhao]})h 
- 2 

(16) 

which upon adding to (15) yields 

• "'(r) = q~"(r) + q~'(r) 

= ( ~  {cos 4zch. (ro-r) 

1 ~ cos4~rh [ r o + r + ( U ° 2 r k ° ) ] } )  
+ N j>k " - h" 

(17) 

An inconvenience arises in that although one can take 
measures to insure that Icos (4rch. ro+2~Ono)l does not 
exceed a value of one by simply resetting the value of 
[IEhlZ--21Ehol 2] in equation (12), one does not a priori 
know the mathematical sign of sin (4zch. ro+2~0ho), 
since it is only known that 

[sin (4rch. ro + 2~0ho)l 
x 

= ( l - [ c o s  (4zch. r0+2~0ho)]2) 1/2 • (18) 

One satisfactory way to resolve this dilemma is to 
select those vectors which correspond to maxima in 
synthesis (15) and determine the tentative sign of the 
sine term directly from the trial values of ro and the 
known phase ~0h0. Peaks in the vector map which arise 
from those cosine terms involving 4~0h0 should vanish 
for the correct solution, and are not expected to cancel 
for the erroneous solutions. 

A parallel analysis for the function (8) leads to an 
expression similar to (13)" 

T= ~ Ighol'{cos [4zch. (r0-r)] 
h 

+cos [&rh. (r0+r)+4~0~o]) , (19) 
and since 

(2_ 1) (,_ 1) 
N 

x ~ cos 2~h. (rjo-rko) 
j > k  

+ ~ -  cos 4zch. (rjo- rko) 
J>k 

4 
+ - ~ -  j~k ~ cos 2nh. (2rjo-rko-rzo) 

4 
+ N~ ~ cos 2z~h. (rio -- rko + rzo- r,,o) 

j ~ k ~ l ~ m  (20) 
it follows that 

T ' =  ( ( 2 - 1 )  ~ cos 4zch • (ro-r) 

+ cos [4~h. (ro +r) -t- 4~0h0] 

+ z,, cos . [,.o-r +_ (r.,o ] 

+cos (ro +r +_ (r.,o-rko)) + 4 ,,o]2 

+ ~'V --rl ~, j>kZ cos 4rdr. [ro-r  _+ (rjo--rko) ] 

+cos {4~rh. (ro+r _ (Go--fRo)] +4CPh0] 

2 [ro-r (rio- (r~--°° ~ r~'°))] ÷ + 

+--N- T ~ ~ cos4~h, r o - r  
h j C k ¢ l C r a  

----- ( r J° --  rg° -~-2 rio - rmo ) ]  

+cos [4rch. (ro+r +) rJ°-  rk° 2 r'°-- rm°)) +4~0h0])n. 

(21) 

A comparison of those terms common to both (15) 
and (21) clearly indicates that the latter produces spu- 
rious maxima which are twice as large as those anti- 
cipated in the phase-modulated synthesis (15). It should 
also be noted that the remaining three summations in 
(21) contain approximately N2/2, N3/2, and N4/4 con- 
tributors respectively. It will be recognized that only 

A C 31A - 2 
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a small percentage of these contributors in the latter 
summations need be vectors that overlap in order to 
bring about a situation where a spurious maximum 
may exceed the intensity of the true location-vector 
maximum. Similar analyses of the Q(R0) and Da(~i) 
synthesis are seen to involve IEhol 4 and have spurious 
background characteristics similar to (21). One of the 
referees examining this manuscript stressed that much 
of the spurious background in the Q(R0) function is 
attributable to the overriding role played by a few un- 
fortunate, large terms which appear in the synthesis. 
The referee offered that one physical interpretation of 
the reduction in the background noise of the phase- 
modulated synthesis might be that many more terms 
provide a significant contribution to the function and 
minimize the effect of series termination in the sub- 
sequent synthesis. 

It should be added that whereas insufficient time 
has elapsed for the Karle translation function to gain 
as general an acceptance as the Q function, a recent 
application (Delbaere & James, 1973) leads one to 
conclude that although the noise level of spurious 
maxima by either method may be considerable, it is 
often possible to eliminate intelligently certain of these 
spurious maxima as probable solutions. 

The spurious background can be eliminated by re- 
formulating (11) 

( ~ IEhlZi~-~h01 ~ - -- 21fh01Z • 2~0h0]> • " ( r )= \ ~  cos [4nh r +  
h 

= ( ~  {cos 4nh.  (r0-r) 
h 

+ cos [4nh. (r0 + r) + 4~0u01 })h. (22) 

The theoretical advantages of this form are compro- 
mised by certain computational problems. In practice 
one will encounter difficulties with space groups which 
incorporate more than one symmetry operation, and 
in applications to partial structures. For a partial 
structure one must take precautions to insure that a 
quotient of the form {[Eh[2--2[Ehol2/2[Eho [2} is well 
behaved in that the cosine term in (12) assumes 
reasonable values. This might suggest the removal of 
those terms from (22) for which IEho] 2 is smaller than 
some fixed threshold value. Trial calculations have 
shown that the evaluation of (22) over those terms for 
which IEbo[ 2 is large may greatly reduce the size of the 
Fourier synthesis but the end result is usually no better 
than the normal phase-modulated synthesis (11). 

Similar difficulties are encountered in higher space- 
group symmetry for complete structures. The presence 
of four distinct cosine terms given in equation (30) in 
the Appendix implies that Gp21/c is at best a probabi- 
listic estimate of any one cosine term when h, l #  0, k # 0. 
However, the restriction of (30) to either hOl or 0k0 
data makes it possible to express Gph/c as a function 
of a single cosine term which may be precisely esti- 
mated. 

4. Analysis of partial structures 

It may be worth while to note that one need not be 
restricted to crystallographic problems which contain 
one molecule in the asymmetric unit, nor do these 
molecules need to be completely described. In general, 
the structure-factor equations may be formulated in 
P1 as 

N M 

Fh: ~ Fh0j exp (2nih . r j )+  ~ f j  exp (2nih. rj) (23) 
j = l  j=l  

where the Fh0 are transforms of correctly oriented 
1 

molecules or fragments thereof and the f j  are the 
atomic scattering factors of any residual atoms in the 
unit cell. All displacements are relative to the origin 
defining any chosen transform designated as Fhoi. It 
follows that 

N M 

Gh = {[Fhl z -  ~ IFh0,12- ~ f } }  
j=l  j = l  

N N 

=2 ~. ~, IFho,Fhoil cos [2nh. (r i -rj)  + ~0ho,--~%j] 
i C j  

N M 

+ 2 ~ ~ IFhofJI cos [2nh. (r,--rj)+~0ho~] 
i j 

M M 

+ 2 cos [2 h. (24) 

If we consider the three distinct parts of equation 
(24) it will be recognized that the Fourier transform of 
Gh via the trigonometric form cos [2nh. r+~Ohot--~0hoj] 
yields the Patterson function of the ith and j th mol- 
ecular fragments. A similar exercise regarding the 
second term prescribes the synthesis of Gh Cos [2nh. r 
+~0h0t] which produces the crystal structure of the 
residual atoms relative to the origin of the ith mol- 
ecular transform. The last term of equation (24) indi- 
cates that the Patterson function based on Gh cos (2nh. 
r) will simply be the Patterson function of the residual 
atoms. Given that the cross vectors between molecular 
fragments may be anticipated to produce the largest 
vector maxima, since they are proportional to 
<lFhotFhoti>h, it follows that structure elucidation 
should begin with Fourier syntheses to determine these 
vectors whenever it is possible. 

5. Test calculations 

Data were obtained for the crystal structure of p- 
methoxybenzenesulfon-p-anisidide, C14HxsNO4S (Po- 
krywiecki, Weeks & Duax, 1973) which crystallizes in 
the space group P2Je with four molecules in the unit 
cell. A number of preliminary test calculations were 
performed in order to compare the results given by 
equation (32) given in the Appendix with those 
obtained by the appropriate Q(R0) and Tx(t) functions 
referred to above. Random, normalized Gaussian 
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displacements were imparted to the refined atomic co- 
ordinates of the non-hydrogen atoms of the structure 
so that the root-mean-square error in the relative 
atomic positions of the molecule was 0.11 A. This was 
done to simulate the magnitude of error one might 
obtain in a trial model constructed from Patterson 
vectors. A provisional structure for the location vector 
synthesis was obtained by shifting this molecule to an 
arbitrary position within the unit cell. The scale factor 
used to place the structure amplitudes on an absolute 
scale was that obtained from the refinement; an overall 
isothermal temperature factor of 3.5 A -2 was used in 
the computations. Only data for which (sin 0)/2E 
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0.30 A -1 were included in the syntheses, Care was 
taken to remove the 0k0 reflections which only affect 
the background of the maps and make direct com- 
parisons of questionable value. The hOl data were also 
subsequently ignored in an affort to minimize the 
satellite peaks they produce as a consequence of the 
glide component. The calculations were repeated for 
normalized structure amplitude data and the cor- 
responding sharpened location-vector maps were ob- 
tained. 

A comparison of the location-vector maps, apart 
from indicating the correct displacement vector by 
their largest maxima, readily revealed similarities in 

0 a 0 

¢ . ( ~  ¢ c/ 
(al)  (bl) (cl) 

cF. q3 
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0 r .~. /~ ( o (  "-" 
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<3 
C n 

(c2) 

o°/ 

a 0 
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o0o 
(=3) (b3)i 
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0 

0. 

(c3) 
Fig. 1. Location vector syntheses for p-methoxybenzenesulfon-p-anisidide: (a) Q(R0), (b) Tx(t), Section y=½, and (c) t/i(x,z). 

Postscripts denote (1) F synthesis, (2) E synthesis, and (3) E synthesis with hOl data omitted• Contour levels are plotted for 
relative densities of 25, 50, 75, 90 and 100; the position of the anticipated location vector is marked with x .  

A C 31A - 2* 
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the positions of the larger spurious maxima. Whereas 
the relative number and the magnitude of spurious 
maxima were comparable for the Q(R0) and Tl(t) 
syntheses, the phase-modulated synthesis, qS(x,z), 
showed a significant reduction in the magnitude of 
this background as is illustrated in Fig. 1. 

Further trial calculations were performed in order 
to determine whether this degree of improvement 
could be anticipated for the less ideal situations in 
which only partial structural information is available. 
Data obtained from the crystal structure of estriol 
(Cooper, Norton & Hauptman, 1969) were used to 
this end. Estriol crystallizes in the space group P2, 
with two molecules in the asymmetric unit; the (hOl) 
projection of the structure is severely overlapped. 
Relative atomic coordinates were generated for each 
of the two molecules in the manner previously de- 
scribed. Data were extended to include 828 terms for 
which (sin 0)/2~0-40 A -1, the 0k0 reflections were 
ignored as before. Sharpened Q(R0), Tl(t) and ~(x,z) 
syntheses were executed on the basis of the partial 
structural information provided by either of the two 
molecules with the exclusion of the other. The ap- 
propriate ~b(x,z) synthesis for the space group P21 is 
defined by equation (29) in the Appendix. The real 
components of the molecular deconvolution corres- 
ponding to the quantities in the braces of equations 
(28) were redefined for a partial structure as is indicated 
by the left-hand side of equation (24). The resultant 
location-vector maps are presented in Fig. 2. The Q(R0) 
and T~(t) functions are seen to produce 'sausage- 
shaped' maxima which are indicative of the limited 

ability of these functions to locate the correct mol- 
ecular image in the crystal structure provided by the 
example. This discrimination appears to be signifi- 
cantly better for the ~(x,z) function in that the back- 
ground noise of the map is lower and the distortion 
of the location-vector maxima is less pronounced. 

Whereas the initial molecular coordinates were ob- 
tained by adding the same displacement vector to the 
refined coordinates of both contiguous molecules, in 
a practical application these vectors would seldom be 
similar. In the particular problem one is free to define 
the position of the first molecule with respect to any of 
the four equivalent screw axes, but then a fourfold 
ambiguity must be resolved with respect to the correct 
placement of the second molecule. The map contours in 
Fig. 2 are decidedly dimensionless for the E modulus 
syntheses but would have units of electrons-squared if 
F values were used. 

Estriol molecule (II) was used as a partial structure 
from which the crystal structure of the remaining 
atoms was computed by (24). It should be noted that 
the appropriate syntheses are similar to unweighted 
difference electron-density syntheses except that the 
latter use I Ehl -- I Eh0l in place of the corresponding value 
of Gh given by the left-hand side of equation (24). In 
trial (II), these calculations were repeated for a smaller 
eleven-atom fragment of the estriol molecule which 
represented less than 25% of the electron density 
within the unit cell. This eleven-atom fragment in- 
cluded atoms 0(3) and C(1) through C(10) which 
define the A and B rings of the steroid molecule. The 
root-mean-square displacement of these atoms from 

o 
a 

(al) (bl) (cl) 

0 

I 
(a2) 

o @ O0 
(b2) 

o 

2 
(c2) 

Fig. 2. Sharpened location vector syntheses for estriol: (a) Q(R0), (b) Tilt), Section y=~-, and (c) ~(x,z). Postscripts (1) and 
(2) refer to analyses based on the molecular transform provided by either estriol molecule (I) or (II). Contour levels are plotted 
for relative densities of 25, 50, 75, 90 and 100; the position of the anticipated location vector is marked with x. 
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their refined positions was 0.10 A as previously noted. 
Lastly, in trial (III), this calculation was executed with 
the refined coordinates of this eleven-atom fragment. 
In all instances the corresponding unweighted dif- 
ference electron-density syntheses were assembled for 
purposes of comparison. 

Each of the Fourier syntheses was examined with the 
object of recognizing the structure of estriol molecule 
(I). Molecular packing considerations restrict the 
search to approximately half the volume of the asym- 
metric unit. The observations summarized in Table 1 
suggest that the synthesis of the residual structure 
given by (24) is probably better than the corresponding 
difference electron-density synthesis with regard to both 
the frequency and intensity of spurious maxima. The 
accuracy of the atomic coordinates of the residual 
molecule appears to be comparable. The similarities of 
trials (II) and (III) tend to indicate that these syntheses 
are not as sensitive to errors in the description of the 
partial structure as one may have anticipated. The 
results alluded to in Table 1 may be misleading, 
however, in that the correct maxima from trials (II) 
and (III) define a molecule whose bond lengths vary 
from 1.0 to 1-9 A in either extreme. Under such cir- 
cumstances there is a great temptation to utilize the 
spurious maxima in constructing molecules which are 
chemically more acceptable. 

Table 1. Summary of the observations 
Rank no. spurious R.m.s. displacement 

Trial no. maxima among 21 of correct maxima 
from text largest map peaks from refined positions 

(a) (b) (a) (b) 
(I) 21 20, 21 0.24 A 0-24 .~ 
(II) 20 11, 19 0"31 0"31 
(III) 20, 21 7, 10, 16 0"31 0"29 

(a) Calculation using equation (24), (b) corresponding un- 
weighted difference electron-density synthesis. 

6. Note on the D3(~i) function 

A note is added in explanation for the omission of the 
D3(6) function in the comparison of translation func- 
tions cited at the beginning of the last section. The 
author submits that the parameter C3 given in (10) can 
serve the purpose of eliminating a cumulative origin 
peak in the D3(6) function; however, no evidence exists 
to suggest that the Da(6) function contains such an 
origin peak. This may be demonstrated by averaging 
(10) over the Friedel pairs in the diffraction data to 
arrive at 

D~(6) = ~ ~ ~ [(IEhkzl z -  1 ) -  2(IEh~,~ol z -  1)]lEhkzol z 
h k l 

x cos [2z~(hx + ky + lz) + 2~0hkto] 

- E ~ ~ [(IEhk'12-- 1)--2([Ehkzo ]z- 1)183 
h k 1 

x cos [2z~(hx + ky + lz)]. (25) 

After further factoring the first term in (25) and bor- 
rowing from equations (12) and (8) we arrive at 

D;(6) = T(26) + ½ ~ ~ ~ [IEh~,l 2 -  2lehklol 2] 
h k 1 

- ~ Z Z [( IEhk,12- 1) -- 2(IEhk'0 [z-  1)]Ca 
h k l 

× cos [2zc(hx + ky + lz)]. (26) 

A complete lack of terms of the sort cos (4nh. r) in 
(21) insures that T(26) possesses no predictable origin 
peak. The second term of (26) uniformly adds a con- 
stant value to all densities in the D3(6) function pro- 
duced by the T(26) component. While the last term 
of (26) may be adjusted to remove any cumulative 
density at the origin, this activity is clearly unrelated 
to any improvement of the D3(6) function to yield in- 
formation beyond that which is supplied by the T(26) 
component of the function. In fact the value of C3 is 
immaterial if one performs Karle's multiple-shift pro- 
cedure to the differential limit. The integral average of 
all differentially shifted maps summed back onto a 
common reference map is the single map simply pro- 
duced by neglecting the last term in (26). 

7. Summary 

The phase-modulated translation function has been 
tentatively shown to be superior to similar functions 
which are modulated by both the phase and amplitude 
of molecular transform products. Its adoption is urged 
as an improved alternative to those translation func- 
tions which are in popular usage. 

The translation function of a partial structure has 
been analyzed as a difference density function which 
is comparable to the difference electron-density syn- 
thesis. The limited scope of the trial examples regarding 
the comparison of the difference electron densities 
produced by these two functions should strongly per- 
suade one to exercise caution in drawing too many 
conclusions at this time. 
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fully acknowledged. This work was supported in part 
by U.S.P.H. Grant No. RR 05716 and NSF Grant No. 
MPS73-04992. 

APPENDIX 

In the space group P21 one may readily show that 

Fhkl "~" Fhkto exp [2rd(hxo + lzo)] 
+(--1)kFr, k~o exp [-2zd(hxo+lzo)] , (27) 

where it should be noted that Fhkto and F~kTo are not 
symmetry related. This may be simply done by as- 
sociating Fhkto and its expressed displacement factor 
with the initial equipoint (x,y,z) and stepwise per- 
forming all of the necessary rotational, inversion, 
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mirror and crystallographic translation operations on 
the molecular transform triple and its displacement 
factor to generate the remaining equivalent positions 
of the space group. 

Next multiply Fhkz by its complex conjugate and 
transpose the separable squared moduli to the left 
to get 

G e2t = ( -  1)k {i F~,ul2- iFhk,ol z -- iFn~aol2} 

= 2lFhk,oF~kTol COS [4z~(hxo + lzo) 

+ (~Phk'o + ~'0)1 " (28) 

The Fourier transform of Ge21 may be cleanly ex- 
pressed as 

CI)(x,z)= ~ E E G p21 
h k i 

x cos [4zc(hx + lz) + (~P*~ao + ~hrao)]. (29) 

A similar analysis in the space group P2,/c will help 
illustrate the increasing number of permissible syn- 
theses for space groups containing additional symme- 
try. One may readily show that 

Ge2x/c= { 'Fhu122 IFnkz°'2 - 'Fh~t°[2} 

= IFhk~ol z cos [4zc(hxo + kyo + lzo) + 2~0hkZ0] 

+ I&~,ol z cos [4zc(hxo - kyo + lzo) + 2q~,~, o] 

+ ( -  1) k + qghuoFh~zol 

x {cos [4zt(hx0 + lzo) + ~OhkZo + ~0h~t0] 

+ COS [4z&y0 + ~P~kt0 -- t;h~,0]} (30) 

which suggests that the following three syntheses 

• (x, y , z )= E E E Gp21/c 
h k l 

x {cos [4zc(hx + ky + lz) + 2~0hUo] 

+cos [4rc(hx-ky+ lz)+ 2q~hizo]} , (31) 

• (x,z)= ~ ~ ~ ( - 1 )  k+'GP21/c 
h k 1 

x cos [4rc(hx + lz) + (~Ohk, + ~P,,~zo)], (32) 

and 

~(Y)= E E ~ ( -  1)k+'Ge2,/c 
h k l 

x cos [4z&Y+~0,Uo-~Ph~o] (33) 

may prove useful for determining the molecular dis- 
placement vector relative to the inversion center, screw 
axis, and glide plane respectively. 
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